A generalized output pruning algorithm for matrix-vector multiplication and its application to compute pruning discrete cosine transform

نویسندگان

  • Yuh-Ming Huang
  • Ja-Ling Wu
  • Chi-Lun Chang
چکیده

In this paper, a generalized output pruning algorithm for matrixvector multiplication is proposed first. Then the application of the proposed pruning algorithm to compute pruning Discrete Cosine Transform (DCT) is addressed. It is shown that, for a given decomposition of the matrix of the transform kernel and the pruning pattern, the unnecessary operations for computing an output pruning DCT can be eliminated thoroughly by using the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Output Pruning Algorithm for Matrix-Vector Multiplication and Its Application to Compu - Signal Processing, IEEE Transactions on

In this correspondence, a generalized output pruning algorithm for matrix-vector multiplication is proposed. It is shown that for a given decomposition of the matrix of the transform kernel and the pruning pattern, the unnecessary operations for computing an output pruning discrete cosine transform (DCT) can be eliminated thoroughly by using the proposed algorithm

متن کامل

Pruning the Two-Dimensional Fast Cosine Transform

Two pruning algorithms for the Vector-Radix Fast Cosine Transform are presented. Both are based on an in-place approach of the direct two-dimensional fast cosine transform (2D FCT). The first pruning algorithm concerns the computation of N0xN0 out of NxN DCT points, where both N0 and N are powers of 2. The second pruning algorithm is more general and concerns a recursive approach for the comput...

متن کامل

Pruning fast Fourier transform algorithm design using group-based method

In this paper, we propose the grouped scheme, which can be specially applied to compute the pruning fast Fourier transform (pruning FFT) with power-of-two partial transformation length. The group-based pruning FFT algorithm applies the scheme of the grouped frequency indices to accelerate computations of selected discrete Fourier transform (DFT) outputs. The proposed pruning FFT algorithm has f...

متن کامل

A Fast Zigzag-Pruned 4×4 DTT Algorithm for Image Compression

The Discrete Tchebichef Transform (DTT) is a linear orthogonal transform which has higher energy compactness property like other orthogonal transform such as Discrete Cosine Transform (DCT). It is recently found applications in image analysis and compression. This paper proposes a new approach of fast zigzag pruning algorithm of 4x4 DTT coefficients. The principal idea of the proposed algorithm...

متن کامل

Some New Results in Fast Hartley Transform Algorithms - M.S. Thesis

Finding the spectrum of a signal swiftly has been an ever-growing demand in Digital Signal Processing. In quest to meet this stipulation, Discrete Hartley Transform (DHT) is becoming as an encouraging substitute to the more popular discrete Fourier transform. Fast methods to compute the DHT are in existence and are named as fast Hartley transforms (FHTs). In this thesis, a new split-radix FHT a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2000